Highest vectors of representations (total 6) ; the vectors are over the primal subalgebra. | \(-g_{12}+g_{11}+g_{5}\) | \(g_{15}\) | \(g_{18}-1/2g_{11}+1/2g_{5}\) | \(g_{8}\) | \(g_{24}\) | \(g_{1}\) |
weight | \(\omega_{1}+\omega_{2}\) | \(\omega_{1}+\omega_{2}\) | \(\omega_{1}+\omega_{2}\) | \(\omega_{1}+\omega_{2}\) | \(3\omega_{1}\) | \(3\omega_{2}\) |
Isotypical components + highest weight | \(\displaystyle V_{\omega_{1}+\omega_{2}} \) → (1, 1) | \(\displaystyle V_{3\omega_{1}} \) → (3, 0) | \(\displaystyle V_{3\omega_{2}} \) → (0, 3) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(3\omega_{1}\) \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(-3\omega_{1}+3\omega_{2}\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(-3\omega_{2}\) | \(3\omega_{2}\) \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(3\omega_{1}-3\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(-3\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) | \(3\omega_{1}\) \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(-3\omega_{1}+3\omega_{2}\) \(0\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(-3\omega_{2}\) | \(3\omega_{2}\) \(\omega_{1}+\omega_{2}\) \(-\omega_{1}+2\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(3\omega_{1}-3\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-2\omega_{2}\) \(-\omega_{1}-\omega_{2}\) \(-3\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus 2M_{0}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus 2M_{0}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) | \(\displaystyle M_{3\omega_{1}}\oplus M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus M_{-3\omega_{1}+3\omega_{2}} \oplus M_{0}\oplus M_{-2\omega_{1}+\omega_{2}}\oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\oplus M_{-3\omega_{2}}\) | \(\displaystyle M_{3\omega_{2}}\oplus M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus M_{0}\oplus M_{3\omega_{1}-3\omega_{2}} \oplus M_{-2\omega_{1}+\omega_{2}}\oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\oplus M_{-3\omega_{1}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus 2M_{0}\oplus M_{-2\omega_{1}+\omega_{2}} \oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\) | \(\displaystyle 3M_{\omega_{1}+\omega_{2}}\oplus 3M_{-\omega_{1}+2\omega_{2}}\oplus 3M_{2\omega_{1}-\omega_{2}}\oplus 6M_{0}\oplus 3M_{-2\omega_{1}+\omega_{2}} \oplus 3M_{\omega_{1}-2\omega_{2}}\oplus 3M_{-\omega_{1}-\omega_{2}}\) | \(\displaystyle M_{3\omega_{1}}\oplus M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus M_{-3\omega_{1}+3\omega_{2}} \oplus M_{0}\oplus M_{-2\omega_{1}+\omega_{2}}\oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\oplus M_{-3\omega_{2}}\) | \(\displaystyle M_{3\omega_{2}}\oplus M_{\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{1}-\omega_{2}}\oplus M_{0}\oplus M_{3\omega_{1}-3\omega_{2}} \oplus M_{-2\omega_{1}+\omega_{2}}\oplus M_{\omega_{1}-2\omega_{2}}\oplus M_{-\omega_{1}-\omega_{2}}\oplus M_{-3\omega_{1}}\) |
2 & | -1\\ |
-1 & | 2\\ |